User Trust in Assisted Decision-Making Using Miniaturized Near-Infrared Spectroscopy

Published in Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 2021


We investigate the use of a miniaturized Near-Infrared Spectroscopy (NIRS) device in an assisted decision-making task. We consider the real-world scenario of determining whether food contains gluten, and we investigate how end-users interact with our NIRS detection device to ultimately make this judgment. In particular, we explore the effects of different nutrition labels and representations of confidence on participants’ perception and trust. Our results show that participants tend to be conservative in their judgment and are willing to trust the device in the absence of understandable label information. We further identify strategies to increase user trust in the system. Our work contributes to the growing body of knowledge on how NIRS can be mass-appropriated for everyday sensing tasks, and how to enhance the trustworthiness of assisted decision-making systems.